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Abstract

We describe part of the current framework of the TRANSIMS traffic research project at the Los
Alamos National Laboratory. It includes parallel implementations of a route planner and a microscopic
traffic simulation model. We present performance figures and results of an offline load-balancing

scheme used in one of the iterative re-planning runs required for dynamic route assignment.

1 Introduction

The traditional urban transportation planning process consists of four steps: trip generation, trip

distribution, modal split, and assignment of routes onto the network.

Iterated microsimulations of traffic provide an alternative for the assignment portion. Several

groups (e.g. [1, 4, 6, 7, 5, 15]) have used the iterative approach of routing — microsimulation —



feedback of travel-times to obtain an assignment (route set) that is, within the accuracy permitted
by any implicit or explicit stochasticity of the model, self-consistent. In this paper we outline part
of the framework of TRANSIMS [2, 3] as it was used for an extensive case-study of the Dallas
/ Fort Worth street network. It consists of two main applications: (a) a route planner based
upon a fast implementation of the Dijkstra algorithm that uses time-dependent link travel-times
to compute shortest routes, and (b) a traffic microsimulation that executes the routes generated

by the planner and supplies a feedback file which is used in subsequent calls of the router.

In the following sections we will describe the two applications and their mutual dependency in

more detail.

2 Application Framework

The basic input of the dynamic assignment process is a list of trips’ defining what vehicles depart
from which origin at what departure time to what destination. For all considerations presented
in this paper, the list of trips is regarded as given and fixed. The main goal lies in assigning
actual route plans to these trips which fulfill a certain optimization criterion, e.g. minimizing each
individual’s travel-time based upon the actual time-dependent link travel-times which would be
generated by executing the route-plans. In TRANSIMS a microsimulation is used to provide (and

verify) the link travel-times generated by the route-plan.

Since the first route-set is usually based upon unrealistic travel-times (e.g. vehicles traveling at

speed limit), the process of routing of all (or a fraction f,. of all) trips, route execution, and

'In general, TRANSIMS uses lists of activities (sleep, eat, work, ...) instead of lists of trips. A trip connects two
activities, if they happen at different locations. For the purpose of this paper, talking about trips will be sufficient,

though, and simplify notation.
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feedback of travel-times has to be repeated in an iterative process. Figure 1 depicts the data flow
during an iteration run. It turned out that choosing a re-planning fraction f, < 1.0 improves the
relaxation behavior. Figure 2 shows the accumulated travel-time as a function of the iteration
number for different iteration strategies and re-planning fractions of 1% and 5% (see [11]). It
is obvious that approximately 40 to 60 iterations with 5% re-planning are required before the

travel-time has reached a sufficiently relaxed state.

3 Route Planner

During the first iteration the route planner reads the trip file and a (potentially time-dependent)
link travel-times file to generate a route set. For each subsequent step, it uses the route set of
the previous step (which includes the trips implicitly) and re-routes a fraction of all trips. The
travel-time feedback from the microsimulation is averaged over bins of width ¢, = 900 seconds.
Both for the initial route planning and for re-planning, each route is handled independently, i.e.
the planner itself does not keep track of the delays that will be caused by travelers on the links

they are intending to use.

3.1 Parallelization

The route planner uses a classical master-slave approach with PVM as message passing library.
The master reads in the current route-plan and distributes trips by coding them into messages
and sending them to the slaves. Each slave reads a copy of the travel-time feedback file for its
shortest path computations. The slaves return routes which are sorted with respect to departure
time and written to a new route set file by the master. Since the computations of the routes are

completely independent, there is no communication between the slaves at all.
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Figure 3: Ezecution times of the Route Planner

Figure 3 shows the execution times for processing 100,000 plans at two different re-planning frac-
tions. The speedup is better for larger re-planning fractions f, because the ratio between shortest
path computations and 1/O overhead improves. Still, current speed-up is not very satisfactory and
we may have to think about more efficient methods such as packaging several route requests into

single messages, or maybe even completely abandoning the master-slave approach.

4 Microsimulation

The cellular automaton (CA) traffic model used in the microsimulation was developed by several
authors, first as a single-lane version [10] and later extended to a two-lane version [12]. Its dis-
creteness (both in time and space) as well as its small set of update rules (three for single lane
motion and another three for lane changing) permit extremely high execution speeds. Rickert,

Wagner and Gawron [13, 14] implemented a parallelized traffic simulation running several times



faster then real—time? for the German Autobahn network on an SGI Power Challenger. A compre-

hensive summary about how the traffic CA has been used in simulation models can be found in

[8].

4.1 Parallelization

The inherent structure of a traffic microsimulation favors a domain composition as the general

approach to parallelization:

e The street network can easily partitioned into tiles of equal or almost equal size. A realistic

measure for size is the accumulated length of all streets associated with a tile.

e The range of interdependencies between network elements are restricted to the interaction
range of the CA model. All current rule sets have a interaction range of 35[m/| which is still
small with respect to the average link length. Therefore, the network easily separates into

independent components.

Therefore, the most straightforward approach is to use an orthogonal recursive bisection for the
distribution of the network. Links residing on two CPUs are cut in the middle. As a consequence,
the tiles exchange boundary information containing all data necessary for the evaluation of the

CA rule sets, resulting only in local communication between neighboring tiles.

The simulation uses a parallel update with a global time-step. However, synchronization of all
CPUs is only performed after a simulation—sequence comprising approximately 10-20 time—steps.

In between, there is only an implicit synchronization through the exchange of local boundaries.

2Running at several times real-time means that several simulation seconds can be computed in one wall-clock

second.
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Figure 4: Execution times with external load feedback

The global time—step is used to guarantee consistent collection of statistical data: Although partial
results from the CPUs may not be collected at the same physical wall-clock time due to a potential
time-step gradient (see [9]), they always belong to the same logical time-step. The master CPU

takes care of combining partial results.

Each time-step is subdivided into two sub-time-steps. The first sub-time-step is used for lane
changing, while the second sub-time-step is used for forward motion. Each sub-time-step requires

the exchange of boundaries between CPUs.

The actual implementation of the microsimulation was done by defining descendent C++ classes
of the C++ base classes provided in the Parallel Toolbox. The underlying communication library
has interfaces for both PVM and MPI. A description of the toolbox is beyond the scope of this

paper. More information can be found in [11].



4.2 Off-line Load Balancing

We implemented a simple external feedback for the initial static load balancing. During run time
we collect the execution time of each link and each intersection (node). The statistics are output
to file every 1000 time-steps. For the next iteration run the file is fed back to the initial load
balancing algorithm. In this iteration, instead of using the link lengths as load estimate, the actual

execution times are used as distribution criterion.

To verify the impact of this approach we monitored the execution times per time-step throughout
the simulation period. Figure 4 depicts the results of one of the iteration runs. For iteration
step 1, the load balancer used the link lengths as criterion. The execution times were low until the
first grid-locks® appear around 7:30 am. The execution time increased fivefold from 0.04 [sec] to
0.2 [sec]. In iteration 2 the execution time is almost independent of the simulation time. Note that
due to the equilibration, the execution time for early simulation hours increased from 0.04 [sec]

to 0.06 [sec], but this effect is more than compensated later on.

The figure also contains plots for later iterations (11, 15, 20, and 40). The improvement of
execution times is mainly due to the route adaptation process: all grid-locks have disappeared and

the average vehicle density is much lower.

5 Performance

The trip file contained 300,000 trips occupying approximately 250 MByte of disk space (120
MByte in a slightly compressed binary format). The planning network comprised 9864 nodes

and unidirectional 24662 links. The simulation network itself consisted of 2292 nodes and 6124

8 A grid-lock is a traffic situation in which vehicles get stuck in dense traffic jams which cannot be resolved anymore.



unidirectional links covering an area of about 5x5 miles in the center of the Dallas street network.
The original routes generated for the planning network were truncated to the simulation network
by a pre-processor. A typical iteration step takes about 6-8 minutes for pre-processing, 30-35
minutes for simulation using eight CPUs (250 MHz) on SUN Enterprise 4000, and 15-20 minutes

for re-planning on one CPU.

Starting with the second iteration we use a UNIX pipe to overlay the re-planning and the pre-

processing of the next iteration on two CPUs.

6 Summary and Outlook

We presented a framework for dynamic traffic assignment. The fast implementation of the traffic-
simulation and the use of parallel computers allowed us to compute a self-consistent route-set
within 30 hours. For future computations the speed will have to be increased considerably. Instead
of simulating a small part of a network, the next test-bed will comprise all streets of a medium-sized
city. This will increase the computational load by a factor of 20. One improvement will consist in
increasing the number of CPUs for the computation. Also, the exchange of data between the route
planner and the microsimulation should be done in a distributed fashion instead of aggregating

and disaggregating all routes in one file for each iteration.
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